A~linear representability of group $G_{n,k,l}=\langle a,t;\ a^n=1,\ t^{-1}a^k t=a^l\rangle$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1415-1418.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the group $G_{n,k,l}=\langle a,t;\ a^n =1,\ t^{-1}a^kt=a^l\rangle$, where $n\neq0,k,l$ are integers, has faithful linear representation over a field of characteristic 0. An algoritm for explicit constructing of faithful linear representations of such groups is obtained.
@article{FPM_1998_4_4_a16,
     author = {R. T. Vol'vachev},
     title = {A~linear representability of group $G_{n,k,l}=\langle a,t;\ a^n=1,\ t^{-1}a^k t=a^l\rangle$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1415--1418},
     publisher = {mathdoc},
     volume = {4},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a16/}
}
TY  - JOUR
AU  - R. T. Vol'vachev
TI  - A~linear representability of group $G_{n,k,l}=\langle a,t;\ a^n=1,\ t^{-1}a^k t=a^l\rangle$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 1415
EP  - 1418
VL  - 4
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a16/
LA  - ru
ID  - FPM_1998_4_4_a16
ER  - 
%0 Journal Article
%A R. T. Vol'vachev
%T A~linear representability of group $G_{n,k,l}=\langle a,t;\ a^n=1,\ t^{-1}a^k t=a^l\rangle$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 1415-1418
%V 4
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a16/
%G ru
%F FPM_1998_4_4_a16
R. T. Vol'vachev. A~linear representability of group $G_{n,k,l}=\langle a,t;\ a^n=1,\ t^{-1}a^k t=a^l\rangle$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1415-1418. http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a16/