A~linear representability of group $G_{n,k,l}=\langle a,t;\ a^n=1,\ t^{-1}a^k t=a^l\rangle$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1415-1418
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the group $G_{n,k,l}=\langle a,t;\ a^n =1,\ t^{-1}a^kt=a^l\rangle$, where $n\neq0,k,l$ are integers, has faithful linear representation over a field of characteristic 0. An algoritm for explicit constructing of faithful linear representations of such groups is obtained.
@article{FPM_1998_4_4_a16,
author = {R. T. Vol'vachev},
title = {A~linear representability of group $G_{n,k,l}=\langle a,t;\ a^n=1,\ t^{-1}a^k t=a^l\rangle$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1415--1418},
publisher = {mathdoc},
volume = {4},
number = {4},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a16/}
}
TY - JOUR
AU - R. T. Vol'vachev
TI - A~linear representability of group $G_{n,k,l}=\langle a,t;\ a^n=1,\ t^{-1}a^k t=a^l\rangle$
JO - Fundamentalʹnaâ i prikladnaâ matematika
PY - 1998
SP - 1415
EP - 1418
VL - 4
IS - 4
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a16/
LA - ru
ID - FPM_1998_4_4_a16
ER -
R. T. Vol'vachev. A~linear representability of group $G_{n,k,l}=\langle a,t;\ a^n=1,\ t^{-1}a^k t=a^l\rangle$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 4, pp. 1415-1418. http://geodesic.mathdoc.fr/item/FPM_1998_4_4_a16/