Contrast structures in singularly perturbed problems
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 3, pp. 799-851
Cet article a éte moissonné depuis la source Math-Net.Ru
Some new results in singular perturbation theory — namely the basic positions of contrast structures theory — are presented. The algorithm of asymptotic expansion, the existence and stability theorems for different contrast structures in ordinary nonlinear differential equations and also in partial differential equations are formulated. The new asymptotic differential inequalities method for proving of these theorems is proposed.
@article{FPM_1998_4_3_a0,
author = {A. B. Vasil'eva and V. F. Butuzov and N. N. Nefedov},
title = {Contrast structures in singularly perturbed problems},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {799--851},
year = {1998},
volume = {4},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_3_a0/}
}
TY - JOUR AU - A. B. Vasil'eva AU - V. F. Butuzov AU - N. N. Nefedov TI - Contrast structures in singularly perturbed problems JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 799 EP - 851 VL - 4 IS - 3 UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_3_a0/ LA - ru ID - FPM_1998_4_3_a0 ER -
A. B. Vasil'eva; V. F. Butuzov; N. N. Nefedov. Contrast structures in singularly perturbed problems. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 3, pp. 799-851. http://geodesic.mathdoc.fr/item/FPM_1998_4_3_a0/