Regularized traces of boundary problems in case of multiple roots of characteristic polynomial
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 567-583
Voir la notice de l'article provenant de la source Math-Net.Ru
The boundary problem on a segment for differential equation of $n$ order with coefficients polynomially depending on spectral parameter $\lambda$ is considered. In the general case of multiple roots of Tamarkin's characteristic polynomial the regularized traces, i.e. the sums $\sum\limits_k[\lambda_k^m-A_m(k)]$, $m\in\mathbb{N}$, are calculated, where $\lambda_k$ are eigenvalues of the problem, and $A_m(k)$ are totally defined numbers, ensuring the convergence of series.
@article{FPM_1998_4_2_a7,
author = {A. S. Pechentsov},
title = {Regularized traces of boundary problems in case of multiple roots of characteristic polynomial},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {567--583},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a7/}
}
TY - JOUR AU - A. S. Pechentsov TI - Regularized traces of boundary problems in case of multiple roots of characteristic polynomial JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 567 EP - 583 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a7/ LA - ru ID - FPM_1998_4_2_a7 ER -
A. S. Pechentsov. Regularized traces of boundary problems in case of multiple roots of characteristic polynomial. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 567-583. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a7/