Unbounded solutions of the~Cauchy problem for doubly nonlinear degenerate parabolic equations
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 543-557
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove several theorems on the global solvability of the Cauchy problem with initial data increasing at infinity for one-dimensional second-order implicitly degenerate parabolic equations that contain certain powers of the unknown and of its derivative with respect to the spatial argument.
@article{FPM_1998_4_2_a5,
author = {A. S. Kalashnikov},
title = {Unbounded solutions of {the~Cauchy} problem for doubly nonlinear degenerate parabolic equations},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {543--557},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a5/}
}
TY - JOUR AU - A. S. Kalashnikov TI - Unbounded solutions of the~Cauchy problem for doubly nonlinear degenerate parabolic equations JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 543 EP - 557 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a5/ LA - ru ID - FPM_1998_4_2_a5 ER -
A. S. Kalashnikov. Unbounded solutions of the~Cauchy problem for doubly nonlinear degenerate parabolic equations. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 543-557. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a5/