On direct summands of tensor product
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 775-777.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that every direct summand of tensor product $G\otimes A$ of a torsion free rank 1 Abelian group $A$ and Abelian group $G$ of $\mathfrak{J}_{PA}$ has a form $\widetilde{G}\otimes A$, where $\widetilde{G}$ is the subgroup of $G$ isomorphic to some direct summand of $G$.
@article{FPM_1998_4_2_a23,
     author = {E. B. Malyshev},
     title = {On direct summands of tensor product},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {775--777},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a23/}
}
TY  - JOUR
AU  - E. B. Malyshev
TI  - On direct summands of tensor product
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 775
EP  - 777
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a23/
LA  - ru
ID  - FPM_1998_4_2_a23
ER  - 
%0 Journal Article
%A E. B. Malyshev
%T On direct summands of tensor product
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 775-777
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a23/
%G ru
%F FPM_1998_4_2_a23
E. B. Malyshev. On direct summands of tensor product. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 775-777. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a23/