Finiteness conditions for subdirectly irreducible $S$-acts and modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 763-767.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, for every semigroup $S$ of $n$ elements, the cardinalities of the subdirectly irreducible $S$-acts are less or equal to $2^{n+1}$. If the cardinalities of the subdirectly irreducible $S$-acts are bounded by a natural number then $S$ is a periodic semigroup. It is obtained a combinatorial proof of the fact that there exist only finitely many of unitary subdirect irreducible modules over a finite ring.
@article{FPM_1998_4_2_a21,
     author = {I. B. Kozhukhov},
     title = {Finiteness conditions for subdirectly irreducible $S$-acts and modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {763--767},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a21/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
TI  - Finiteness conditions for subdirectly irreducible $S$-acts and modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 763
EP  - 767
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a21/
LA  - ru
ID  - FPM_1998_4_2_a21
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%T Finiteness conditions for subdirectly irreducible $S$-acts and modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 763-767
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a21/
%G ru
%F FPM_1998_4_2_a21
I. B. Kozhukhov. Finiteness conditions for subdirectly irreducible $S$-acts and modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 763-767. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a21/