Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 751-755.

Voir la notice de l'article provenant de la source Math-Net.Ru

An effective analog of Shidlovskii's third theorem about algebraic independence of values of E-functions, satisfying system of linear differential equations has been obtained.
@article{FPM_1998_4_2_a19,
     author = {V. A. Gorelov},
     title = {Algebraic independence of values of {E-functions,} satisfying arbitrary algebraic equations over $\mathbb C(z)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {751--755},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a19/}
}
TY  - JOUR
AU  - V. A. Gorelov
TI  - Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 751
EP  - 755
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a19/
LA  - ru
ID  - FPM_1998_4_2_a19
ER  - 
%0 Journal Article
%A V. A. Gorelov
%T Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 751-755
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a19/
%G ru
%F FPM_1998_4_2_a19
V. A. Gorelov. Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 751-755. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a19/