Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 751-755
Voir la notice de l'article provenant de la source Math-Net.Ru
An effective analog of Shidlovskii's third theorem about algebraic independence of values of E-functions, satisfying system of linear differential equations has been obtained.
@article{FPM_1998_4_2_a19,
author = {V. A. Gorelov},
title = {Algebraic independence of values of {E-functions,} satisfying arbitrary algebraic equations over $\mathbb C(z)$},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {751--755},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a19/}
}
TY - JOUR AU - V. A. Gorelov TI - Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$ JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 751 EP - 755 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a19/ LA - ru ID - FPM_1998_4_2_a19 ER -
%0 Journal Article %A V. A. Gorelov %T Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$ %J Fundamentalʹnaâ i prikladnaâ matematika %D 1998 %P 751-755 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a19/ %G ru %F FPM_1998_4_2_a19
V. A. Gorelov. Algebraic independence of values of E-functions, satisfying arbitrary algebraic equations over $\mathbb C(z)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 751-755. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a19/