On the solvability of linear inverse problem with final overdetermination in a Banach space of~$L^1$-type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 691-708.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given $T>0$ we consider the inverse problem in a Banach space $E$ \begin{gather*} du(t)/dt=Au(t)+\Phi(t)f,\quad 0\le t\le T, \\ u(0)=u_0,\ \ u(T)=u_1,\quad u_0,u_1 \in D(A) \end{gather*} where the element $f\in E$ is unknown. Our main result may be written as follows (cf. theorem 2): Let $E=L^1(X,\mu)$ and let $A$ be the infinitesimal generator of a $C_0$ semigroup $U(t)$ on $L^1(X,\mu)$ satisfying $\|U(t)\|1$ for $t>0$. Let $\Phi(t)$ be defined by $$ \big(\Phi(t)f\big)(x)=\varphi(x,t)\cdot f(x) $$ where $\varphi\in C^1([0,T];L^\infty(X,\mu))$. Suppose that $\varphi(x,t)\ge0$, $\partial\varphi(x,t)/\partial t\ge0$ and $\mu$-$\inf\varphi(x,T)>0$. Then for each pair $u_0,u_1\in D(A)$ the inverse problem has a unique solution $f\in L^1(X,\mu)$, i. e., there exists a unique $f\in L^1(X,\mu)$ such that the corresponding function $$ u(t)=U(t)u_0+\int\limits_0^t U(t-s)\Phi(s)f\,ds, \quad 0\le t\le T, $$ satisfies the final condition $u(T)=u_1$. Moreover, $\|f\|\le C(\|Au_0\|+\|Au_1\|)$ with the constant $C>0$ computing in the explicit form (see formulas (9), (11)). An abstract version of this assertion is given in theorem 1. To illustrate the results we present three examples: the linear inhomogeneous system of ODE, the heat equation in $\mathbb R^n$, and the one-dimensional “transport equation”.
@article{FPM_1998_4_2_a14,
     author = {I. V. Tikhonov},
     title = {On the solvability of linear inverse problem with final overdetermination in a {Banach} space of~$L^1$-type},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {691--708},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a14/}
}
TY  - JOUR
AU  - I. V. Tikhonov
TI  - On the solvability of linear inverse problem with final overdetermination in a Banach space of~$L^1$-type
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 691
EP  - 708
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a14/
LA  - ru
ID  - FPM_1998_4_2_a14
ER  - 
%0 Journal Article
%A I. V. Tikhonov
%T On the solvability of linear inverse problem with final overdetermination in a Banach space of~$L^1$-type
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 691-708
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a14/
%G ru
%F FPM_1998_4_2_a14
I. V. Tikhonov. On the solvability of linear inverse problem with final overdetermination in a Banach space of~$L^1$-type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 691-708. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a14/