Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 669-689.

Voir la notice de l'article provenant de la source Math-Net.Ru

Exact analytical representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and the boundary of its domain of convergence are given. It is shown, that Appell's functions $F_2(1,1)$ and $F_3(1,1)$ have the property of mirror-like symmetry with respect to the center $j_0=-1/2$ under the change $j\mapsto-j-1$, $j\in\mathbb{Z}$, and they correlate between each other.
@article{FPM_1998_4_2_a13,
     author = {V. F. Tarasov},
     title = {Representations for {Appell's} series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {669--689},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a13/}
}
TY  - JOUR
AU  - V. F. Tarasov
TI  - Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 669
EP  - 689
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a13/
LA  - ru
ID  - FPM_1998_4_2_a13
ER  - 
%0 Journal Article
%A V. F. Tarasov
%T Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 669-689
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a13/
%G ru
%F FPM_1998_4_2_a13
V. F. Tarasov. Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 669-689. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a13/