Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 669-689
Voir la notice de l'article provenant de la source Math-Net.Ru
Exact analytical representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and the boundary of its domain of convergence are given. It is shown, that Appell's functions $F_2(1,1)$ and $F_3(1,1)$ have the property of mirror-like symmetry with respect to the center $j_0=-1/2$ under the change $j\mapsto-j-1$, $j\in\mathbb{Z}$, and they correlate between each other.
@article{FPM_1998_4_2_a13,
author = {V. F. Tarasov},
title = {Representations for {Appell's} series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {669--689},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a13/}
}
TY - JOUR AU - V. F. Tarasov TI - Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 669 EP - 689 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a13/ LA - ru ID - FPM_1998_4_2_a13 ER -
%0 Journal Article %A V. F. Tarasov %T Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence %J Fundamentalʹnaâ i prikladnaâ matematika %D 1998 %P 669-689 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a13/ %G ru %F FPM_1998_4_2_a13
V. F. Tarasov. Representations for Appell's series $F_2(x,y)$ to the vicinity of the singular point $(1,1)$ and near the boundary of its domain of convergence. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 669-689. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a13/