Semirings of continuous nonnegative functions: divisibility, ideals, congruences
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 493-510
Voir la notice de l'article provenant de la source Math-Net.Ru
Authors investigate the properties of divisibility (GCD, LCM, to be Bezout semiring) in semirings of continuous nonnegative real-valued functions on a topological space $X$. The correspondences between the lattice of ideals of the ring $C(X)$ and the lattice of ideals of the semiring $C^{+}(X)$ are considered. New characterizations of $F$-spaces are obtained. Congruences on abstract semirings are studied. Maximal congruences of semirings $C^+(X)$ are described. It is shown that all congruences on a semifield $U(X)$ of all continuous pozitive functions on $X$ are ideal congruences if and only if $X$ is the pseudocompact space.
@article{FPM_1998_4_2_a1,
author = {V. I. Varankina and E. M. Vechtomov and I. A. Semenova},
title = {Semirings of continuous nonnegative functions: divisibility, ideals, congruences},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {493--510},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a1/}
}
TY - JOUR AU - V. I. Varankina AU - E. M. Vechtomov AU - I. A. Semenova TI - Semirings of continuous nonnegative functions: divisibility, ideals, congruences JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 493 EP - 510 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a1/ LA - ru ID - FPM_1998_4_2_a1 ER -
%0 Journal Article %A V. I. Varankina %A E. M. Vechtomov %A I. A. Semenova %T Semirings of continuous nonnegative functions: divisibility, ideals, congruences %J Fundamentalʹnaâ i prikladnaâ matematika %D 1998 %P 493-510 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a1/ %G ru %F FPM_1998_4_2_a1
V. I. Varankina; E. M. Vechtomov; I. A. Semenova. Semirings of continuous nonnegative functions: divisibility, ideals, congruences. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 493-510. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a1/