Asymptotical behaviour for some functionals of positively and negatively dependent random fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 479-492
Voir la notice de l'article provenant de la source Math-Net.Ru
Using Stein–Goetze–Barbour techniques we estimate the proximity of values of a functional of certain class taken respectively on processes of weighted partial sums type and on appropriate Gaussian processes. The former processes arise from random fields on $\mathbb Z^d$ which are either weakly associated or negatively dependent.
@article{FPM_1998_4_2_a0,
author = {A. V. Bulinski and E. Shabanovich},
title = {Asymptotical behaviour for some functionals of positively and negatively dependent random fields},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {479--492},
publisher = {mathdoc},
volume = {4},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a0/}
}
TY - JOUR AU - A. V. Bulinski AU - E. Shabanovich TI - Asymptotical behaviour for some functionals of positively and negatively dependent random fields JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 479 EP - 492 VL - 4 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a0/ LA - ru ID - FPM_1998_4_2_a0 ER -
%0 Journal Article %A A. V. Bulinski %A E. Shabanovich %T Asymptotical behaviour for some functionals of positively and negatively dependent random fields %J Fundamentalʹnaâ i prikladnaâ matematika %D 1998 %P 479-492 %V 4 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a0/ %G ru %F FPM_1998_4_2_a0
A. V. Bulinski; E. Shabanovich. Asymptotical behaviour for some functionals of positively and negatively dependent random fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 479-492. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a0/