Asymptotical behaviour for some functionals of positively and negatively dependent random fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 479-492.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using Stein–Goetze–Barbour techniques we estimate the proximity of values of a functional of certain class taken respectively on processes of weighted partial sums type and on appropriate Gaussian processes. The former processes arise from random fields on $\mathbb Z^d$ which are either weakly associated or negatively dependent.
@article{FPM_1998_4_2_a0,
     author = {A. V. Bulinski and E. Shabanovich},
     title = {Asymptotical behaviour for some functionals of positively and negatively dependent random fields},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {479--492},
     publisher = {mathdoc},
     volume = {4},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a0/}
}
TY  - JOUR
AU  - A. V. Bulinski
AU  - E. Shabanovich
TI  - Asymptotical behaviour for some functionals of positively and negatively dependent random fields
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 479
EP  - 492
VL  - 4
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a0/
LA  - ru
ID  - FPM_1998_4_2_a0
ER  - 
%0 Journal Article
%A A. V. Bulinski
%A E. Shabanovich
%T Asymptotical behaviour for some functionals of positively and negatively dependent random fields
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 479-492
%V 4
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a0/
%G ru
%F FPM_1998_4_2_a0
A. V. Bulinski; E. Shabanovich. Asymptotical behaviour for some functionals of positively and negatively dependent random fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 2, pp. 479-492. http://geodesic.mathdoc.fr/item/FPM_1998_4_2_a0/