Strongly countable-dimensional resolvents of sigma-compact groups
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 101-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every topological group $H$ which is a $Q^\infty$-manifold there exists a topological group which is an $\mathbb R^\infty$-manifold and can be mapped onto $H$ by a homomorphism satisfying some sufficiently strong softness conditions.
@article{FPM_1998_4_1_a6,
     author = {M. M. Zarichnyi},
     title = {Strongly countable-dimensional resolvents of sigma-compact groups},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {101--108},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a6/}
}
TY  - JOUR
AU  - M. M. Zarichnyi
TI  - Strongly countable-dimensional resolvents of sigma-compact groups
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 101
EP  - 108
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a6/
LA  - ru
ID  - FPM_1998_4_1_a6
ER  - 
%0 Journal Article
%A M. M. Zarichnyi
%T Strongly countable-dimensional resolvents of sigma-compact groups
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 101-108
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a6/
%G ru
%F FPM_1998_4_1_a6
M. M. Zarichnyi. Strongly countable-dimensional resolvents of sigma-compact groups. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 101-108. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a6/