On one sufficient condition for complete regularity of rectifiable spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 75-79
Voir la notice de l'article provenant de la source Math-Net.Ru
Some condition (2) is given which turns out to be equivalent to the following one: some natural family of neighborhoods of the diagonal forms a quasi-uniformity on a given rectifiable space. So every rectifiable space with (2)-property is completely regular. The condition (2) is also useful in proving some other theorems.
@article{FPM_1998_4_1_a4,
author = {A. S. Gul'ko},
title = {On one sufficient condition for complete regularity of rectifiable spaces},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {75--79},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a4/}
}
A. S. Gul'ko. On one sufficient condition for complete regularity of rectifiable spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 75-79. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a4/