Rational $n$-dimensional spaces and the property of universality
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 49-74
In this paper we prove that in the family of all metrizable separable spaces having rational dimension $\leqslant n$, $n=1,2,\ldots$, there exists a universal element.
@article{FPM_1998_4_1_a3,
author = {D. N. Georgiou and S. D. Iliadis},
title = {Rational $n$-dimensional spaces and the property of universality},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {49--74},
year = {1998},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a3/}
}
D. N. Georgiou; S. D. Iliadis. Rational $n$-dimensional spaces and the property of universality. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 49-74. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a3/