Rational $n$-dimensional spaces and the property of universality
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 49-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that in the family of all metrizable separable spaces having rational dimension $\leqslant n$, $n=1,2,\ldots$, there exists a universal element.
@article{FPM_1998_4_1_a3,
     author = {D. N. Georgiou and S. D. Iliadis},
     title = {Rational $n$-dimensional spaces and the property of universality},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {49--74},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a3/}
}
TY  - JOUR
AU  - D. N. Georgiou
AU  - S. D. Iliadis
TI  - Rational $n$-dimensional spaces and the property of universality
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 49
EP  - 74
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a3/
LA  - ru
ID  - FPM_1998_4_1_a3
ER  - 
%0 Journal Article
%A D. N. Georgiou
%A S. D. Iliadis
%T Rational $n$-dimensional spaces and the property of universality
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 49-74
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a3/
%G ru
%F FPM_1998_4_1_a3
D. N. Georgiou; S. D. Iliadis. Rational $n$-dimensional spaces and the property of universality. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 49-74. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a3/