The Cauchy–Mellin integral transformation for $\Gamma(z)$ and its application
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 467-470
The Cauchy integral (3) for the representation of $\Gamma(z)$, when $\operatorname{Re}z0$ is a noninteger, and the Mellin integral (4) together form the new “integral transformation of Cauchy–Mellin type” for $\Gamma(z)$, with the help of which we can find exact analytical representations in form of “nonorientable” power series for hypergeometric functions from one, two and more variables in a “pole-domain” of Euler's gamma-function.
@article{FPM_1998_4_1_a27,
author = {V. F. Tarasov},
title = {The {Cauchy{\textendash}Mellin} integral transformation for $\Gamma(z)$ and its application},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {467--470},
year = {1998},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a27/}
}
V. F. Tarasov. The Cauchy–Mellin integral transformation for $\Gamma(z)$ and its application. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 467-470. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a27/