The Cauchy--Mellin integral transformation for $\Gamma(z)$ and its application
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 467-470
Voir la notice de l'article provenant de la source Math-Net.Ru
The Cauchy integral (3) for the representation of $\Gamma(z)$, when $\operatorname{Re}z0$ is a noninteger, and the Mellin integral (4) together form the new “integral transformation of Cauchy–Mellin type” for $\Gamma(z)$, with the help of which we can find exact analytical representations in form of “nonorientable” power series for hypergeometric functions from one, two and more variables in a “pole-domain” of Euler's gamma-function.
@article{FPM_1998_4_1_a27,
author = {V. F. Tarasov},
title = {The {Cauchy--Mellin} integral transformation for $\Gamma(z)$ and its application},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {467--470},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a27/}
}
TY - JOUR AU - V. F. Tarasov TI - The Cauchy--Mellin integral transformation for $\Gamma(z)$ and its application JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 467 EP - 470 VL - 4 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a27/ LA - ru ID - FPM_1998_4_1_a27 ER -
V. F. Tarasov. The Cauchy--Mellin integral transformation for $\Gamma(z)$ and its application. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 467-470. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a27/