The Cauchy--Mellin integral transformation for $\Gamma(z)$ and its application
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 467-470.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy integral (3) for the representation of $\Gamma(z)$, when $\operatorname{Re}z0$ is a noninteger, and the Mellin integral (4) together form the new “integral transformation of Cauchy–Mellin type” for $\Gamma(z)$, with the help of which we can find exact analytical representations in form of “nonorientable” power series for hypergeometric functions from one, two and more variables in a “pole-domain” of Euler's gamma-function.
@article{FPM_1998_4_1_a27,
     author = {V. F. Tarasov},
     title = {The {Cauchy--Mellin} integral transformation for $\Gamma(z)$ and its application},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {467--470},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a27/}
}
TY  - JOUR
AU  - V. F. Tarasov
TI  - The Cauchy--Mellin integral transformation for $\Gamma(z)$ and its application
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 467
EP  - 470
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a27/
LA  - ru
ID  - FPM_1998_4_1_a27
ER  - 
%0 Journal Article
%A V. F. Tarasov
%T The Cauchy--Mellin integral transformation for $\Gamma(z)$ and its application
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 467-470
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a27/
%G ru
%F FPM_1998_4_1_a27
V. F. Tarasov. The Cauchy--Mellin integral transformation for $\Gamma(z)$ and its application. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 467-470. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a27/