On kinetic interpretation of measure valued solutions to Cauchy problem for a first order quasilinear equation
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 317-332
In terms of a distribution function we give kinetic interpretation of a measure valued solution to Cauchy problem for a first order quasilinear equation. The known results concerning generalized solutions (in the class $L^\infty$) of the considered problem are thus generalized. Besides we describe “kinetic” solutions corresponding to strong measure valued solutions (which form a class of existence and uniqueness for original problem).
@article{FPM_1998_4_1_a21,
author = {E. Yu. Panov},
title = {On kinetic interpretation of measure valued solutions to {Cauchy} problem for a first order quasilinear equation},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {317--332},
year = {1998},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a21/}
}
TY - JOUR AU - E. Yu. Panov TI - On kinetic interpretation of measure valued solutions to Cauchy problem for a first order quasilinear equation JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1998 SP - 317 EP - 332 VL - 4 IS - 1 UR - http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a21/ LA - ru ID - FPM_1998_4_1_a21 ER -
E. Yu. Panov. On kinetic interpretation of measure valued solutions to Cauchy problem for a first order quasilinear equation. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 317-332. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a21/