On rings over which the latice of all pretorsions has only one maximal element
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 223-231
Voir la notice de l'article provenant de la source Math-Net.Ru
The latice $K(R)$ of all pretorsions of the category $\mathcal{M}$ of left unitary $R$-modules over an associative ring $R$ with unity element is examined and the rings over which the latice $K(R)$ has only one maximal element are described. Some applications are shown too.
@article{FPM_1998_4_1_a17,
author = {I. D. Bunu},
title = {On rings over which the latice of all pretorsions has only one maximal element},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {223--231},
publisher = {mathdoc},
volume = {4},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a17/}
}
I. D. Bunu. On rings over which the latice of all pretorsions has only one maximal element. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 223-231. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a17/