Tensor product of Radon probability measures is $\tau$-additive
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 165-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions of preservation of $\tau$-additiveness of probability measures by tensor product are given. In particular, tensor product of Radon probability measures is $\tau$-additive.
@article{FPM_1998_4_1_a13,
     author = {V. V. Fedorchuk},
     title = {Tensor product of {Radon} probability measures is $\tau$-additive},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {165--180},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a13/}
}
TY  - JOUR
AU  - V. V. Fedorchuk
TI  - Tensor product of Radon probability measures is $\tau$-additive
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 165
EP  - 180
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a13/
LA  - ru
ID  - FPM_1998_4_1_a13
ER  - 
%0 Journal Article
%A V. V. Fedorchuk
%T Tensor product of Radon probability measures is $\tau$-additive
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 165-180
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a13/
%G ru
%F FPM_1998_4_1_a13
V. V. Fedorchuk. Tensor product of Radon probability measures is $\tau$-additive. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 165-180. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a13/