On geometry of continuous mappings of countable functional weight
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 155-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

A continuous mapping $f\colon X\to Y$ is parallel to a space $Z$ if it is embeddable into the projection of the topological product $Y\times Z$ onto $Y$. The theorems of W. Hurewicz (on the existence of a zero-dimensional continuous mapping into $k$-cube for any $k$-dimensional metrizable compactum) and of Nöbeling–Pontrjagin–Lefschetz (on the embeddability of any $k$-dimensional metrizable compactum into $(2k+1)$-cube) are extended to continuous mappings of countable functional weight (i. e. mappings parallel to the Hilbert cube) of finite-dimensional (in sense of $\dim$) Tychonoff spaces.
@article{FPM_1998_4_1_a12,
     author = {B. A. Pasynkov},
     title = {On geometry of continuous mappings of countable functional weight},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {155--164},
     publisher = {mathdoc},
     volume = {4},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a12/}
}
TY  - JOUR
AU  - B. A. Pasynkov
TI  - On geometry of continuous mappings of countable functional weight
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1998
SP  - 155
EP  - 164
VL  - 4
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a12/
LA  - ru
ID  - FPM_1998_4_1_a12
ER  - 
%0 Journal Article
%A B. A. Pasynkov
%T On geometry of continuous mappings of countable functional weight
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1998
%P 155-164
%V 4
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a12/
%G ru
%F FPM_1998_4_1_a12
B. A. Pasynkov. On geometry of continuous mappings of countable functional weight. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 155-164. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a12/