On a class of hereditarily paracompact spaces
Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 141-154
A topological space $(X,{\tau})$ is called upholstered provided that for any quasi-pseudometric $q$ on $X$ such that $\tau_q\subseteq\tau$ there is a pseudometric $p$ on $X$ such that $\tau_q\subseteq\tau_p\subseteq\tau$. Each upholstered space is shown to be a perfect paracompact regular space and every perfect compact regular space is shown to be upholstered. Each semi-stratifiable paracompact regular space is upholstered and each quasi-metrizable upholstered space is metrizable. The property of upholsteredness is preserved under closed continuous surjections.
@article{FPM_1998_4_1_a11,
author = {H. A. Kunzi and S. Watson and H. Junnila},
title = {On a~class of hereditarily paracompact spaces},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {141--154},
year = {1998},
volume = {4},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a11/}
}
H. A. Kunzi; S. Watson; H. Junnila. On a class of hereditarily paracompact spaces. Fundamentalʹnaâ i prikladnaâ matematika, Tome 4 (1998) no. 1, pp. 141-154. http://geodesic.mathdoc.fr/item/FPM_1998_4_1_a11/