Nilpotency of prime radical in PI-rings having faithful module with relative Krull dimension
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1229-1237
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper author investigates the properties of PI-rings having faithful module with Krull dimension relative to a noetherian torsion theory. The main results of this paper: Let $R$ be an associative PI-ring with identity, M be a left faithful $R$-module, $\tau$ — noetherian torsion theory. Let $\tau M=0$ and module $M$ have $\tau$-Krull dimension. If $N$ is a nil ideal then there exists a natural $n$ such that ${N}^{n}M=0$. Let $R$ be an associative PI-ring with identity, $M$ be a left faithful $R$-module, $\tau$ — noetherian torsion theory. Let module $M$ have $\tau$-Krull dimension. If $R$ is $\tau$-torsionfree as left $R$-module, module $M$ and prime radical of $R$ are finitely generated, then $R$ has left $\tau$-Krull dimension and left $\tau$-Krull dimension of $R$ is equal to left $\tau$-Krull dimension of module $M$.
@article{FPM_1997_3_4_a19,
author = {A. M. Chernev},
title = {Nilpotency of prime radical in {PI-rings} having faithful module with relative {Krull} dimension},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1229--1237},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a19/}
}
TY - JOUR AU - A. M. Chernev TI - Nilpotency of prime radical in PI-rings having faithful module with relative Krull dimension JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1997 SP - 1229 EP - 1237 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a19/ LA - ru ID - FPM_1997_3_4_a19 ER -
A. M. Chernev. Nilpotency of prime radical in PI-rings having faithful module with relative Krull dimension. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1229-1237. http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a19/