A model of transition from discrete spectrum to continuous one in the singular perturbation theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1199-1227
The spectral problem \begin{gather*} i\varepsilon y''(x)+(x-\lambda)y(x)=0, \\ y(-1)=y(1)=0 \end{gather*} is considered where $\lambda$ is a spectral parameter and $\varepsilon>0$ is a small parameter. Spectrum localization, behavior of eigenfunctions and Green function of this problem are studied by analytical means.
@article{FPM_1997_3_4_a18,
author = {S. A. Stepin},
title = {A~model of transition from discrete spectrum to continuous one in the singular perturbation theory},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1199--1227},
year = {1997},
volume = {3},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a18/}
}
TY - JOUR AU - S. A. Stepin TI - A model of transition from discrete spectrum to continuous one in the singular perturbation theory JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1997 SP - 1199 EP - 1227 VL - 3 IS - 4 UR - http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a18/ LA - ru ID - FPM_1997_3_4_a18 ER -
S. A. Stepin. A model of transition from discrete spectrum to continuous one in the singular perturbation theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1199-1227. http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a18/