A~model of transition from discrete spectrum to continuous one in the singular perturbation theory
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1199-1227.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spectral problem \begin{gather*} i\varepsilon y''(x)+(x-\lambda)y(x)=0, \\ y(-1)=y(1)=0 \end{gather*} is considered where $\lambda$ is a spectral parameter and $\varepsilon>0$ is a small parameter. Spectrum localization, behavior of eigenfunctions and Green function of this problem are studied by analytical means.
@article{FPM_1997_3_4_a18,
     author = {S. A. Stepin},
     title = {A~model of transition from discrete spectrum to continuous one in the singular perturbation theory},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1199--1227},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a18/}
}
TY  - JOUR
AU  - S. A. Stepin
TI  - A~model of transition from discrete spectrum to continuous one in the singular perturbation theory
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 1199
EP  - 1227
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a18/
LA  - ru
ID  - FPM_1997_3_4_a18
ER  - 
%0 Journal Article
%A S. A. Stepin
%T A~model of transition from discrete spectrum to continuous one in the singular perturbation theory
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 1199-1227
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a18/
%G ru
%F FPM_1997_3_4_a18
S. A. Stepin. A~model of transition from discrete spectrum to continuous one in the singular perturbation theory. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1199-1227. http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a18/