Volterra-type problems of integral geometry over a family of rays in three-dimensional space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1109-1115
Voir la notice de l'article provenant de la source Math-Net.Ru
Integral geometry problems of Volterra type in three-dimensional space over a family of rays are considered. Uniqueness theorems are proved and stability estimates are given for solutions in spaces of finite smoothness.
@article{FPM_1997_3_4_a14,
author = {A. H. Begmatov},
title = {Volterra-type problems of integral geometry over a family of rays in three-dimensional space},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1109--1115},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a14/}
}
TY - JOUR AU - A. H. Begmatov TI - Volterra-type problems of integral geometry over a family of rays in three-dimensional space JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1997 SP - 1109 EP - 1115 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a14/ LA - ru ID - FPM_1997_3_4_a14 ER -
A. H. Begmatov. Volterra-type problems of integral geometry over a family of rays in three-dimensional space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1109-1115. http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a14/