Volterra-type problems of integral geometry over a family of rays in three-dimensional space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1109-1115.

Voir la notice de l'article provenant de la source Math-Net.Ru

Integral geometry problems of Volterra type in three-dimensional space over a family of rays are considered. Uniqueness theorems are proved and stability estimates are given for solutions in spaces of finite smoothness.
@article{FPM_1997_3_4_a14,
     author = {A. H. Begmatov},
     title = {Volterra-type problems of integral geometry over a family of rays in three-dimensional space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1109--1115},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a14/}
}
TY  - JOUR
AU  - A. H. Begmatov
TI  - Volterra-type problems of integral geometry over a family of rays in three-dimensional space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 1109
EP  - 1115
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a14/
LA  - ru
ID  - FPM_1997_3_4_a14
ER  - 
%0 Journal Article
%A A. H. Begmatov
%T Volterra-type problems of integral geometry over a family of rays in three-dimensional space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 1109-1115
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a14/
%G ru
%F FPM_1997_3_4_a14
A. H. Begmatov. Volterra-type problems of integral geometry over a family of rays in three-dimensional space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1109-1115. http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a14/