Moment inequalities for sums of dependent multiindexed random variables
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1101-1108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper estimates of absolute moments are established, in case of a centered random field on a lattice $\mathbf{Z}^d$ ($d\ge1$), for sums over finite sets of arbitrary configuration. The dependence condition is given in a form of inequalities for covariances of certain powers of the initial random variables. It is shown that this condition can be deduced, under moment conditions on summands, from the usual mixing conditions for the field as well as from assumption that the field is either positively or negatively dependent.
@article{FPM_1997_3_4_a13,
     author = {Yu. Yu. Bakhtin and A. V. Bulinski},
     title = {Moment inequalities for sums of dependent multiindexed random variables},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1101--1108},
     publisher = {mathdoc},
     volume = {3},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a13/}
}
TY  - JOUR
AU  - Yu. Yu. Bakhtin
AU  - A. V. Bulinski
TI  - Moment inequalities for sums of dependent multiindexed random variables
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 1101
EP  - 1108
VL  - 3
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a13/
LA  - ru
ID  - FPM_1997_3_4_a13
ER  - 
%0 Journal Article
%A Yu. Yu. Bakhtin
%A A. V. Bulinski
%T Moment inequalities for sums of dependent multiindexed random variables
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 1101-1108
%V 3
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a13/
%G ru
%F FPM_1997_3_4_a13
Yu. Yu. Bakhtin; A. V. Bulinski. Moment inequalities for sums of dependent multiindexed random variables. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1101-1108. http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a13/