Moment inequalities for sums of dependent multiindexed random variables
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1101-1108
Voir la notice de l'article provenant de la source Math-Net.Ru
Upper estimates of absolute moments are established, in case of a centered random field on a lattice $\mathbf{Z}^d$ ($d\ge1$), for sums over finite sets of arbitrary configuration. The dependence condition is given in a form of inequalities for covariances of certain powers of the initial random variables. It is shown that this condition can be deduced, under moment conditions on summands, from the usual mixing conditions for the field as well as from assumption that the field is either positively or negatively dependent.
@article{FPM_1997_3_4_a13,
author = {Yu. Yu. Bakhtin and A. V. Bulinski},
title = {Moment inequalities for sums of dependent multiindexed random variables},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1101--1108},
publisher = {mathdoc},
volume = {3},
number = {4},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a13/}
}
TY - JOUR AU - Yu. Yu. Bakhtin AU - A. V. Bulinski TI - Moment inequalities for sums of dependent multiindexed random variables JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1997 SP - 1101 EP - 1108 VL - 3 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a13/ LA - ru ID - FPM_1997_3_4_a13 ER -
Yu. Yu. Bakhtin; A. V. Bulinski. Moment inequalities for sums of dependent multiindexed random variables. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 4, pp. 1101-1108. http://geodesic.mathdoc.fr/item/FPM_1997_3_4_a13/