Radon problem for regular measures on an arbitrary Hausdorf space
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 801-808.

Voir la notice de l'article provenant de la source Math-Net.Ru

An isomorphic linear version of the general Radon representation is given for arbitrary Hausdorf spaces.
@article{FPM_1997_3_3_a9,
     author = {V. K. Zakharov and A. V. Mikhalev},
     title = {Radon problem for regular measures on an arbitrary {Hausdorf} space},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {801--808},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a9/}
}
TY  - JOUR
AU  - V. K. Zakharov
AU  - A. V. Mikhalev
TI  - Radon problem for regular measures on an arbitrary Hausdorf space
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 801
EP  - 808
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a9/
LA  - ru
ID  - FPM_1997_3_3_a9
ER  - 
%0 Journal Article
%A V. K. Zakharov
%A A. V. Mikhalev
%T Radon problem for regular measures on an arbitrary Hausdorf space
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 801-808
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a9/
%G ru
%F FPM_1997_3_3_a9
V. K. Zakharov; A. V. Mikhalev. Radon problem for regular measures on an arbitrary Hausdorf space. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 801-808. http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a9/