Assiociants and the commutant of a quasigroup
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 715-737
Voir la notice de l'article provenant de la source Math-Net.Ru
Six normal congruences called associants or commutator-associants are defined in a quasigroup $Q(\cdot)$ by means of associators of two types and commutators. It is proved that these congruences are verbal congruences corresponding to different types of quasigroups
linear over groups. As a consequence a description of generators of the quasigroup commutant is obtained. Behaviour of the considered congruences under isotopy of quasigroups and in the left-distributive (distributive) quasigroups is investigated.
@article{FPM_1997_3_3_a5,
author = {G. B. Belyavskaya},
title = {Assiociants and the commutant of a quasigroup},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {715--737},
publisher = {mathdoc},
volume = {3},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a5/}
}
G. B. Belyavskaya. Assiociants and the commutant of a quasigroup. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 715-737. http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a5/