Iterative methods for the solution of nonlinear operator equations without the property of the regularity
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 685-692
Cet article a éte moissonné depuis la source Math-Net.Ru
The convergence and stability of recently suggested iterative methods for the approximate solution of nonlinear operator equations without the regularity property (“ill-posed nonlinear problems”) are investigated under the more weak a priori conditions on the solution and the smoothness of the operator.
@article{FPM_1997_3_3_a3,
author = {A. B. Bakushinskii},
title = {Iterative methods for the solution of nonlinear operator equations without the property of the regularity},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {685--692},
year = {1997},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a3/}
}
TY - JOUR AU - A. B. Bakushinskii TI - Iterative methods for the solution of nonlinear operator equations without the property of the regularity JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1997 SP - 685 EP - 692 VL - 3 IS - 3 UR - http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a3/ LA - ru ID - FPM_1997_3_3_a3 ER -
A. B. Bakushinskii. Iterative methods for the solution of nonlinear operator equations without the property of the regularity. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 685-692. http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a3/