Uniserial Laurent series rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 947-951
Voir la notice de l'article provenant de la source Math-Net.Ru
The following conditions are equivalent: (1) the Laurent series ring $A((t))$ is a right uniserial ring; (2) $A((t))$ is a right uniserial right artinian ring; (3) $A$ is a right uniserial right artinian ring.
@article{FPM_1997_3_3_a19,
author = {D. A. Tuganbaev},
title = {Uniserial {Laurent} series rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {947--951},
publisher = {mathdoc},
volume = {3},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a19/}
}
D. A. Tuganbaev. Uniserial Laurent series rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 947-951. http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a19/