Uniserial Laurent series rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 947-951.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following conditions are equivalent: (1) the Laurent series ring $A((t))$ is a right uniserial ring; (2) $A((t))$ is a right uniserial right artinian ring; (3) $A$ is a right uniserial right artinian ring.
@article{FPM_1997_3_3_a19,
     author = {D. A. Tuganbaev},
     title = {Uniserial {Laurent} series rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {947--951},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a19/}
}
TY  - JOUR
AU  - D. A. Tuganbaev
TI  - Uniserial Laurent series rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 947
EP  - 951
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a19/
LA  - ru
ID  - FPM_1997_3_3_a19
ER  - 
%0 Journal Article
%A D. A. Tuganbaev
%T Uniserial Laurent series rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 947-951
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a19/
%G ru
%F FPM_1997_3_3_a19
D. A. Tuganbaev. Uniserial Laurent series rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 947-951. http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a19/