On width of embedding of a semigroup into a group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 925-936.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the generalization of small cancellation theory when only long subwords of defining relators satisfy $C'(\lambda)$ condition. It is proved that a cell such that almost all edges are external exists in van Kampen's diagrams over this group. By this we construct an example of any finite width embedding of semigroup into a group.
@article{FPM_1997_3_3_a17,
     author = {A. V. Sanin},
     title = {On width of embedding of a semigroup into a group},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {925--936},
     publisher = {mathdoc},
     volume = {3},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a17/}
}
TY  - JOUR
AU  - A. V. Sanin
TI  - On width of embedding of a semigroup into a group
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 925
EP  - 936
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a17/
LA  - ru
ID  - FPM_1997_3_3_a17
ER  - 
%0 Journal Article
%A A. V. Sanin
%T On width of embedding of a semigroup into a group
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 925-936
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a17/
%G ru
%F FPM_1997_3_3_a17
A. V. Sanin. On width of embedding of a semigroup into a group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 925-936. http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a17/