On width of embedding of a semigroup into a group
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 925-936
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the generalization of small cancellation theory when only long subwords of defining relators satisfy $C'(\lambda)$ condition. It is proved that a cell such that almost all edges are external exists in van Kampen's diagrams over this group. By this we construct an example of any finite width embedding of semigroup into a group.
@article{FPM_1997_3_3_a17,
author = {A. V. Sanin},
title = {On width of embedding of a semigroup into a group},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {925--936},
year = {1997},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a17/}
}
A. V. Sanin. On width of embedding of a semigroup into a group. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 925-936. http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a17/