Semigroups with right congruences of finite index
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 869-878
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that all non-trivial right congruences of a semigroup $S$ have finite indices if and only if either $S$ is finite or $S$ is isomorphic to a subsemigroup of the additive group of integers with the adjoint zero. This result allows to describe the semigroup algebras whose non-trivial right ideals have the finite codimensions.
@article{FPM_1997_3_3_a14,
author = {I. B. Kozhukhov},
title = {Semigroups with right congruences of finite index},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {869--878},
publisher = {mathdoc},
volume = {3},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a14/}
}
I. B. Kozhukhov. Semigroups with right congruences of finite index. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 3, pp. 869-878. http://geodesic.mathdoc.fr/item/FPM_1997_3_3_a14/