On images of polynomials in finite matrix rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 469-485
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the images of polynomials in non-commuting indeterminates in the ring of $2\times2$ matrices over a Galois ring. The main result: a set of $2\times2$ matrices over a Galois ring whose radical has nilpotency index 2, is an image of a polynomial with zero constant term if and only if it contains 0 and is self-conjugate.
@article{FPM_1997_3_2_a8,
author = {V. V. Kulyamin},
title = {On images of polynomials in finite matrix rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {469--485},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a8/}
}
V. V. Kulyamin. On images of polynomials in finite matrix rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 469-485. http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a8/