On images of polynomials in finite matrix rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 469-485.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the images of polynomials in non-commuting indeterminates in the ring of $2\times2$ matrices over a Galois ring. The main result: a set of $2\times2$ matrices over a Galois ring whose radical has nilpotency index 2, is an image of a polynomial with zero constant term if and only if it contains 0 and is self-conjugate.
@article{FPM_1997_3_2_a8,
     author = {V. V. Kulyamin},
     title = {On images of polynomials in finite matrix rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {469--485},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a8/}
}
TY  - JOUR
AU  - V. V. Kulyamin
TI  - On images of polynomials in finite matrix rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 469
EP  - 485
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a8/
LA  - ru
ID  - FPM_1997_3_2_a8
ER  - 
%0 Journal Article
%A V. V. Kulyamin
%T On images of polynomials in finite matrix rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 469-485
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a8/
%G ru
%F FPM_1997_3_2_a8
V. V. Kulyamin. On images of polynomials in finite matrix rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 469-485. http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a8/