On some algorithmic problems and free products in $R$-varieties of linear $\Omega$-algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 373-397.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method for investigation of linear $\Omega$-algebras is suggest. This method based on the original definition of partial linear $\Omega$-algebra. The method is effective for varieties with analog of Evans's embedding theorem. In the present paper a family of such varieties is defined. For these varieties the positive solution of wordproblem and subalgebraproblem is obtained and the theory of free algebras and free products of algebras is developed. In particular results of this paper generalise some known results of other authors.
@article{FPM_1997_3_2_a3,
     author = {M. M. Glukhov},
     title = {On some algorithmic problems and free products in $R$-varieties of linear $\Omega$-algebras},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {373--397},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a3/}
}
TY  - JOUR
AU  - M. M. Glukhov
TI  - On some algorithmic problems and free products in $R$-varieties of linear $\Omega$-algebras
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 373
EP  - 397
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a3/
LA  - ru
ID  - FPM_1997_3_2_a3
ER  - 
%0 Journal Article
%A M. M. Glukhov
%T On some algorithmic problems and free products in $R$-varieties of linear $\Omega$-algebras
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 373-397
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a3/
%G ru
%F FPM_1997_3_2_a3
M. M. Glukhov. On some algorithmic problems and free products in $R$-varieties of linear $\Omega$-algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 373-397. http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a3/