Recognition of identities in quotient algebras of universal enveloping algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 625-630
Voir la notice de l'article provenant de la source Math-Net.Ru
For special type of (associative) polynomials $f$ and simple algebras $L$ the problem of recognition of identity $f$ in quotient algebra $U_L/J$ of universal enveloping algebra $U_L$ by arbitrary ideal $J$, where $J$ is given by its generators, is solved. The central point of the solution is the
Theorem.
Let $l_1,\ldots,l_p$ be Lie (associative) polynomials with non-intersecting sets of variables which are not identities in $L$, $f=\prod\limits_{i=1}^{p}l_{i}(x_{i_{1}},\ldots,x_{i_{n_{i}}})$, then the verbal ideal $T_f(U_L)$ generated by polynomial $f$ in $U_L$ is equal to $U_L{}^p$.
In particular, $U_L/T_f(U_L)$ is a nilpotent algebra of degree $p$.
@article{FPM_1997_3_2_a14,
author = {E. V. Lukoyanova},
title = {Recognition of identities in quotient algebras of universal enveloping algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {625--630},
publisher = {mathdoc},
volume = {3},
number = {2},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a14/}
}
TY - JOUR AU - E. V. Lukoyanova TI - Recognition of identities in quotient algebras of universal enveloping algebras JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1997 SP - 625 EP - 630 VL - 3 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a14/ LA - ru ID - FPM_1997_3_2_a14 ER -
E. V. Lukoyanova. Recognition of identities in quotient algebras of universal enveloping algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 625-630. http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a14/