On differential inclusions of second order
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 587-623.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the scheme of the structure of the Cauchy problem theory for differential inclusions of second order. We show how to use our topological structures in theory of boundary values problems. We point new relations on the level of equations with continuous right-hand sides too.
@article{FPM_1997_3_2_a13,
     author = {V. V. Filippov},
     title = {On differential inclusions of second order},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {587--623},
     publisher = {mathdoc},
     volume = {3},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a13/}
}
TY  - JOUR
AU  - V. V. Filippov
TI  - On differential inclusions of second order
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 587
EP  - 623
VL  - 3
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a13/
LA  - ru
ID  - FPM_1997_3_2_a13
ER  - 
%0 Journal Article
%A V. V. Filippov
%T On differential inclusions of second order
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 587-623
%V 3
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a13/
%G ru
%F FPM_1997_3_2_a13
V. V. Filippov. On differential inclusions of second order. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 2, pp. 587-623. http://geodesic.mathdoc.fr/item/FPM_1997_3_2_a13/