Wigner--von~Neumann quasi-isospectral manifolds
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 151-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

Schrödinger operator in Wigner and von Neumann form is under consideration. The theorem about positive eigenvalues of this operator is formulated.
@article{FPM_1997_3_1_a8,
     author = {J. Cruz and R. Martinez and R. Navarro},
     title = {Wigner--von~Neumann quasi-isospectral manifolds},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {151--152},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a8/}
}
TY  - JOUR
AU  - J. Cruz
AU  - R. Martinez
AU  - R. Navarro
TI  - Wigner--von~Neumann quasi-isospectral manifolds
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 151
EP  - 152
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a8/
LA  - ru
ID  - FPM_1997_3_1_a8
ER  - 
%0 Journal Article
%A J. Cruz
%A R. Martinez
%A R. Navarro
%T Wigner--von~Neumann quasi-isospectral manifolds
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 151-152
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a8/
%G ru
%F FPM_1997_3_1_a8
J. Cruz; R. Martinez; R. Navarro. Wigner--von~Neumann quasi-isospectral manifolds. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 151-152. http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a8/