On the spectrum of $C^n_b(E)$
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 149-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a real Banach space, $C_b(E)$ be the space of all continuous real functions in $E$. Theorems about maximal ideal space of $C_b(E)$ are given.
@article{FPM_1997_3_1_a7,
     author = {J. Bustamante Gonz\'alez and R. Escobedo Conde},
     title = {On the spectrum of $C^n_b(E)$},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {149--150},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a7/}
}
TY  - JOUR
AU  - J. Bustamante González
AU  - R. Escobedo Conde
TI  - On the spectrum of $C^n_b(E)$
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 149
EP  - 150
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a7/
LA  - ru
ID  - FPM_1997_3_1_a7
ER  - 
%0 Journal Article
%A J. Bustamante González
%A R. Escobedo Conde
%T On the spectrum of $C^n_b(E)$
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 149-150
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a7/
%G ru
%F FPM_1997_3_1_a7
J. Bustamante González; R. Escobedo Conde. On the spectrum of $C^n_b(E)$. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 149-150. http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a7/