The $R_F$-convergence and theorems of Banach Steinhauss type
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 47-67
The concepts of $R_F$-convergence in the space of real (or complex) functions over a Hausdorff topological space and of Riemann integrable functions without using the Riemann integral are given. Some properties of $R_F$-convergence and theorems of Banach Steinhauss type have been proved.
@article{FPM_1997_3_1_a3,
author = {J. L. Fernandez Muniz and L. Alvarez Marin},
title = {The $R_F$-convergence and theorems of {Banach} {Steinhauss} type},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {47--67},
year = {1997},
volume = {3},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a3/}
}
J. L. Fernandez Muniz; L. Alvarez Marin. The $R_F$-convergence and theorems of Banach Steinhauss type. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 47-67. http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a3/