Linear codes over finite rings and modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 195-254
Voir la notice de l'article provenant de la source Math-Net.Ru
The foundations of linear code theory over finite rings and modules are developed. The main objects of investigation are: systematic code, dual code, McWilliams identity, parity-check matrix an the Hamming distance of a code. The properties of codes over modules and linear spaces are compared, and the representations of linear codes by polylinear recurrences are described, the latter being the most efficient for systematic and Abelian group codes. The special role of quasi-Frobenius modules in code theory is revealed. As corollaries we obtain and generalize some known results. In particular, we build cyclic Hamming and BCH codes over an arbitrary primary module.
@article{FPM_1997_3_1_a16,
author = {A. A. Nechaev and A. S. Kuz'min and V. T. Markov},
title = {Linear codes over finite rings and modules},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {195--254},
publisher = {mathdoc},
volume = {3},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a16/}
}
TY - JOUR AU - A. A. Nechaev AU - A. S. Kuz'min AU - V. T. Markov TI - Linear codes over finite rings and modules JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1997 SP - 195 EP - 254 VL - 3 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a16/ LA - ru ID - FPM_1997_3_1_a16 ER -
A. A. Nechaev; A. S. Kuz'min; V. T. Markov. Linear codes over finite rings and modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 195-254. http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a16/