Linear codes over finite rings and modules
Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 195-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

The foundations of linear code theory over finite rings and modules are developed. The main objects of investigation are: systematic code, dual code, McWilliams identity, parity-check matrix an the Hamming distance of a code. The properties of codes over modules and linear spaces are compared, and the representations of linear codes by polylinear recurrences are described, the latter being the most efficient for systematic and Abelian group codes. The special role of quasi-Frobenius modules in code theory is revealed. As corollaries we obtain and generalize some known results. In particular, we build cyclic Hamming and BCH codes over an arbitrary primary module.
@article{FPM_1997_3_1_a16,
     author = {A. A. Nechaev and A. S. Kuz'min and V. T. Markov},
     title = {Linear codes over finite rings and modules},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {195--254},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a16/}
}
TY  - JOUR
AU  - A. A. Nechaev
AU  - A. S. Kuz'min
AU  - V. T. Markov
TI  - Linear codes over finite rings and modules
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1997
SP  - 195
EP  - 254
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a16/
LA  - ru
ID  - FPM_1997_3_1_a16
ER  - 
%0 Journal Article
%A A. A. Nechaev
%A A. S. Kuz'min
%A V. T. Markov
%T Linear codes over finite rings and modules
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1997
%P 195-254
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a16/
%G ru
%F FPM_1997_3_1_a16
A. A. Nechaev; A. S. Kuz'min; V. T. Markov. Linear codes over finite rings and modules. Fundamentalʹnaâ i prikladnaâ matematika, Tome 3 (1997) no. 1, pp. 195-254. http://geodesic.mathdoc.fr/item/FPM_1997_3_1_a16/