On bounds for the pointwise availability of a repairable component
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1101-1105.

Voir la notice de l'article provenant de la source Math-Net.Ru

An alternating renewal process is considered with d.f. $A(t)$ and $B(t)$ of its up-phases and down-phases, respectively. It is assumed that an up-phase starts at the point $t=0$. Let $P(t)$ denote the up-state probability at time $t$. Assume that $A(+0)=0$, the mean duration of an up-phase equals 1 whereas that for a down-phase equals $\rho$. Introduce the function $\Delta(t)$ by the relation $$ (1+\rho)P_0(t)=1+\rho\Delta(t). $$ Let then $B(t)=B_{\rho}(t)$, $\rho\to0$. It is proved that under a mild assumption for any non-exponential distribution $A(t)$ the equality $$\sup\limits_{\delta}|\Delta(t)|\to0 as \rho\to0 $$ cannot hold for every positive $\delta$ and $T$. For the exponential distribution $A(t)$ see Kovalenko $\$ Birolini [3].
@article{FPM_1996_2_4_a8,
     author = {I. N. Kovalenko},
     title = {On bounds for the pointwise availability of a repairable component},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1101--1105},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a8/}
}
TY  - JOUR
AU  - I. N. Kovalenko
TI  - On bounds for the pointwise availability of a repairable component
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 1101
EP  - 1105
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a8/
LA  - ru
ID  - FPM_1996_2_4_a8
ER  - 
%0 Journal Article
%A I. N. Kovalenko
%T On bounds for the pointwise availability of a repairable component
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 1101-1105
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a8/
%G ru
%F FPM_1996_2_4_a8
I. N. Kovalenko. On bounds for the pointwise availability of a repairable component. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1101-1105. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a8/