Statistical variant of the CLT for associated random fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 999-1018
Voir la notice de l'article provenant de la source Math-Net.Ru
The asymptotic normality of sums taken over the “regulary”growing subsets of $\mathbf Z^{d}$ is studied for a strictly stationary associated random field $\{X_{j},\,j\in\mathbf Z^{d}\}$, $d\geq1$. In this connection families of random normalizations are introduced which permits us to construct approximate confidence intervals for the unknown mean of the field. These normalizations include the two statistics proposed for processes (i.e. $d=1$) in a recent paper by M. Peligrad and Q.-M. Shao.
@article{FPM_1996_2_4_a3,
author = {A. V. Bulinski and M. A. Vronskii},
title = {Statistical variant of the {CLT} for associated random fields},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {999--1018},
publisher = {mathdoc},
volume = {2},
number = {4},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a3/}
}
TY - JOUR AU - A. V. Bulinski AU - M. A. Vronskii TI - Statistical variant of the CLT for associated random fields JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1996 SP - 999 EP - 1018 VL - 2 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a3/ LA - ru ID - FPM_1996_2_4_a3 ER -
A. V. Bulinski; M. A. Vronskii. Statistical variant of the CLT for associated random fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 999-1018. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a3/