Statistical variant of the CLT for associated random fields
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 999-1018.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic normality of sums taken over the “regulary”growing subsets of $\mathbf Z^{d}$ is studied for a strictly stationary associated random field $\{X_{j},\,j\in\mathbf Z^{d}\}$, $d\geq1$. In this connection families of random normalizations are introduced which permits us to construct approximate confidence intervals for the unknown mean of the field. These normalizations include the two statistics proposed for processes (i.e. $d=1$) in a recent paper by M. Peligrad and Q.-M. Shao.
@article{FPM_1996_2_4_a3,
     author = {A. V. Bulinski and M. A. Vronskii},
     title = {Statistical variant of the {CLT} for associated random fields},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {999--1018},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a3/}
}
TY  - JOUR
AU  - A. V. Bulinski
AU  - M. A. Vronskii
TI  - Statistical variant of the CLT for associated random fields
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 999
EP  - 1018
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a3/
LA  - ru
ID  - FPM_1996_2_4_a3
ER  - 
%0 Journal Article
%A A. V. Bulinski
%A M. A. Vronskii
%T Statistical variant of the CLT for associated random fields
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 999-1018
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a3/
%G ru
%F FPM_1996_2_4_a3
A. V. Bulinski; M. A. Vronskii. Statistical variant of the CLT for associated random fields. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 999-1018. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a3/