The solvability of some exactly solvable soliton-like equations in terms of hypergeometric functions
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1247-1255
It is shown that some nonlinear wave evolution equations in $1+1$-dimensional space-time in the soliton theory can be solved in terms of hypergepmetric functions of ${}_pF_q$-type. Such approach allows to establish the connection between “model” equations and simple functional relations (in the form of diagrams) of these functions; the latter gives the possibility to consider a number of “inverse problems” in the soliton theory in a new way and to get new “models” of solitary waves.
@article{FPM_1996_2_4_a20,
author = {V. F. Tarasov},
title = {The solvability of some exactly solvable soliton-like equations in terms of hypergeometric functions},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1247--1255},
year = {1996},
volume = {2},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a20/}
}
TY - JOUR AU - V. F. Tarasov TI - The solvability of some exactly solvable soliton-like equations in terms of hypergeometric functions JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1996 SP - 1247 EP - 1255 VL - 2 IS - 4 UR - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a20/ LA - ru ID - FPM_1996_2_4_a20 ER -
V. F. Tarasov. The solvability of some exactly solvable soliton-like equations in terms of hypergeometric functions. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1247-1255. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a20/