The volume of polyhedron as a function of its metric
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1235-1246
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that the volume of any polyhedron is root of some polynomial whose coefficients are not depending on the concrete form of the polyhedron in three-space under the condition that its metric is known apriori. As consequence we have a proof of the “bellows conjecture” affirming the invariance of volume of a flexible polyhedron in the process of its flexion.
@article{FPM_1996_2_4_a19,
     author = {I. Kh. Sabitov},
     title = {The volume of polyhedron as a function of its metric},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1235--1246},
     year = {1996},
     volume = {2},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a19/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - The volume of polyhedron as a function of its metric
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 1235
EP  - 1246
VL  - 2
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a19/
LA  - ru
ID  - FPM_1996_2_4_a19
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T The volume of polyhedron as a function of its metric
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 1235-1246
%V 2
%N 4
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a19/
%G ru
%F FPM_1996_2_4_a19
I. Kh. Sabitov. The volume of polyhedron as a function of its metric. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1235-1246. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a19/