The volume of polyhedron as a function of its metric
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1235-1246.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the volume of any polyhedron is root of some polynomial whose coefficients are not depending on the concrete form of the polyhedron in three-space under the condition that its metric is known apriori. As consequence we have a proof of the “bellows conjecture” affirming the invariance of volume of a flexible polyhedron in the process of its flexion.
@article{FPM_1996_2_4_a19,
     author = {I. Kh. Sabitov},
     title = {The volume of polyhedron as a function of its metric},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1235--1246},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a19/}
}
TY  - JOUR
AU  - I. Kh. Sabitov
TI  - The volume of polyhedron as a function of its metric
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 1235
EP  - 1246
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a19/
LA  - ru
ID  - FPM_1996_2_4_a19
ER  - 
%0 Journal Article
%A I. Kh. Sabitov
%T The volume of polyhedron as a function of its metric
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 1235-1246
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a19/
%G ru
%F FPM_1996_2_4_a19
I. Kh. Sabitov. The volume of polyhedron as a function of its metric. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1235-1246. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a19/