On the nilpotency of subrings of skew group rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1227-1233.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main aim of the present paper is to prove the following theorem. Theorem. Let $A$ be either a left Goldie ring or a ring satisfying the ascending chain conditions both for left and for right annihilators, $G$ be a free commutative group and $\sigma\colon\,G\to\operatorname{Aut}(A)$ be a group homomorphism. Then any homogeneous nilsubsemigroup of the multiplicative semigroup of the skew group ring $A_{\sigma}[G]$ is nilpotent. This theorem can be considered as a skew analogue of a well-known classical result in the ring theory, Shock–Fisher theorem.
@article{FPM_1996_2_4_a18,
     author = {V. A. Mushrub},
     title = {On the nilpotency of subrings of skew group rings},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {1227--1233},
     publisher = {mathdoc},
     volume = {2},
     number = {4},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a18/}
}
TY  - JOUR
AU  - V. A. Mushrub
TI  - On the nilpotency of subrings of skew group rings
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 1227
EP  - 1233
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a18/
LA  - ru
ID  - FPM_1996_2_4_a18
ER  - 
%0 Journal Article
%A V. A. Mushrub
%T On the nilpotency of subrings of skew group rings
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 1227-1233
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a18/
%G ru
%F FPM_1996_2_4_a18
V. A. Mushrub. On the nilpotency of subrings of skew group rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1227-1233. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a18/