On the nilpotency of subrings of skew group rings
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1227-1233
Cet article a éte moissonné depuis la source Math-Net.Ru
The main aim of the present paper is to prove the following theorem. Theorem. Let $A$ be either a left Goldie ring or a ring satisfying the ascending chain conditions both for left and for right annihilators, $G$ be a free commutative group and $\sigma\colon\,G\to\operatorname{Aut}(A)$ be a group homomorphism. Then any homogeneous nilsubsemigroup of the multiplicative semigroup of the skew group ring $A_{\sigma}[G]$ is nilpotent. This theorem can be considered as a skew analogue of a well-known classical result in the ring theory, Shock–Fisher theorem.
@article{FPM_1996_2_4_a18,
author = {V. A. Mushrub},
title = {On the nilpotency of subrings of skew group rings},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1227--1233},
year = {1996},
volume = {2},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a18/}
}
V. A. Mushrub. On the nilpotency of subrings of skew group rings. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1227-1233. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a18/