Using of asymptotic representations for constructing numerical algorithms of singularly perturbed boundary value problems solving
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1187-1194
Cet article a éte moissonné depuis la source Math-Net.Ru
For singular perturbed boundary problems for ordinary differential equations numerical solving method is suggested. This method is based on numerical approximation of coefficients of asymptotic representation differential equations solution. These problems are solved in cases linear equation with rotation point and without it, with noncontinuous function in right side of equation and for quasilinear ordinary differential equations.
@article{FPM_1996_2_4_a14,
author = {B. I. Berezin and N. Yu. Petukhova},
title = {Using of asymptotic representations for constructing numerical algorithms of singularly perturbed boundary value problems solving},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {1187--1194},
year = {1996},
volume = {2},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a14/}
}
TY - JOUR AU - B. I. Berezin AU - N. Yu. Petukhova TI - Using of asymptotic representations for constructing numerical algorithms of singularly perturbed boundary value problems solving JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1996 SP - 1187 EP - 1194 VL - 2 IS - 4 UR - http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a14/ LA - ru ID - FPM_1996_2_4_a14 ER -
%0 Journal Article %A B. I. Berezin %A N. Yu. Petukhova %T Using of asymptotic representations for constructing numerical algorithms of singularly perturbed boundary value problems solving %J Fundamentalʹnaâ i prikladnaâ matematika %D 1996 %P 1187-1194 %V 2 %N 4 %U http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a14/ %G ru %F FPM_1996_2_4_a14
B. I. Berezin; N. Yu. Petukhova. Using of asymptotic representations for constructing numerical algorithms of singularly perturbed boundary value problems solving. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 4, pp. 1187-1194. http://geodesic.mathdoc.fr/item/FPM_1996_2_4_a14/