Algebraic logic in database state description
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 3, pp. 875-910.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Halmos (polyadic) algebra is a notion introduced by Halmos as a tool in the algebraization of the first order predicate calculus. This paper shows how Halmos's theory is used for the definition of algebraic model of a relational database. The model allows, in particular, to develop a formal algebraic approach to the definition of a database state description. The description is based on the notion of filters in Halmos algebras, closely related to the problem of derivability in Halmos algebras and first order language. In this paper, connections between these notions are studied. Using some results on categoricity and D-categoricity of a set of formulas, several examples of database state descriptions are built.
@article{FPM_1996_2_3_a8,
     author = {T. L. Plotkin and B. I. Plotkin and S. Kraus},
     title = {Algebraic logic in database state description},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {875--910},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a8/}
}
TY  - JOUR
AU  - T. L. Plotkin
AU  - B. I. Plotkin
AU  - S. Kraus
TI  - Algebraic logic in database state description
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 875
EP  - 910
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a8/
LA  - ru
ID  - FPM_1996_2_3_a8
ER  - 
%0 Journal Article
%A T. L. Plotkin
%A B. I. Plotkin
%A S. Kraus
%T Algebraic logic in database state description
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 875-910
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a8/
%G ru
%F FPM_1996_2_3_a8
T. L. Plotkin; B. I. Plotkin; S. Kraus. Algebraic logic in database state description. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 3, pp. 875-910. http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a8/