An algorithm of the calculation of derivatives of an implicit function
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 3, pp. 849-861.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of the formalization of the expression for high derivatives of an implicit function is suggested. An algorithm of the calculation of these expressions by the computer is constructed. As an example, the equation $J_{\nu}(x)=0$ is considered where $J_{\nu}(x)$ is the Bessel function of index $\nu$; its solutions $\nu=\nu(x)$ are approximated by the Taylor's polynomial. The coefficients of the approximation are calculated for the first five zeros and the precision of the approximating formulas is examined numerically.
@article{FPM_1996_2_3_a6,
     author = {I. B. Kozhukhov and N. I. Platonov and A. A. Prokof'yev},
     title = {An algorithm of the calculation of derivatives of an implicit function},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {849--861},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a6/}
}
TY  - JOUR
AU  - I. B. Kozhukhov
AU  - N. I. Platonov
AU  - A. A. Prokof'yev
TI  - An algorithm of the calculation of derivatives of an implicit function
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 849
EP  - 861
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a6/
LA  - ru
ID  - FPM_1996_2_3_a6
ER  - 
%0 Journal Article
%A I. B. Kozhukhov
%A N. I. Platonov
%A A. A. Prokof'yev
%T An algorithm of the calculation of derivatives of an implicit function
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 849-861
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a6/
%G ru
%F FPM_1996_2_3_a6
I. B. Kozhukhov; N. I. Platonov; A. A. Prokof'yev. An algorithm of the calculation of derivatives of an implicit function. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 3, pp. 849-861. http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a6/