An asymptotics of the average value of divisor function on shifted Gaussian numbers
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 3, pp. 775-787
Voir la notice de l'article provenant de la source Math-Net.Ru
Under the condition of the extended Riemann hypothesis the asymptotic formula for the number of shifted Gaussian numbers not exceeding the arbitrary given bound is proved.
@article{FPM_1996_2_3_a3,
author = {H. Guediri},
title = {An asymptotics of the average value of divisor function on shifted {Gaussian} numbers},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {775--787},
publisher = {mathdoc},
volume = {2},
number = {3},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a3/}
}
TY - JOUR AU - H. Guediri TI - An asymptotics of the average value of divisor function on shifted Gaussian numbers JO - Fundamentalʹnaâ i prikladnaâ matematika PY - 1996 SP - 775 EP - 787 VL - 2 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a3/ LA - ru ID - FPM_1996_2_3_a3 ER -
H. Guediri. An asymptotics of the average value of divisor function on shifted Gaussian numbers. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 3, pp. 775-787. http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a3/