The mechanism of forced vibration propagation in nonlinear media
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 3, pp. 655-674.

Voir la notice de l'article provenant de la source Math-Net.Ru

The process of finite-amplitude waves generation by distributed external sources is considered. This process is described by the inhomogeneous Burgers equation with initial function equal to zero. The asymptotical solution of the problem is derived.
@article{FPM_1996_2_3_a1,
     author = {O. A. Vasilieva and E. A. Lapshin},
     title = {The mechanism of forced vibration propagation in nonlinear media},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {655--674},
     publisher = {mathdoc},
     volume = {2},
     number = {3},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a1/}
}
TY  - JOUR
AU  - O. A. Vasilieva
AU  - E. A. Lapshin
TI  - The mechanism of forced vibration propagation in nonlinear media
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 655
EP  - 674
VL  - 2
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a1/
LA  - ru
ID  - FPM_1996_2_3_a1
ER  - 
%0 Journal Article
%A O. A. Vasilieva
%A E. A. Lapshin
%T The mechanism of forced vibration propagation in nonlinear media
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 655-674
%V 2
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a1/
%G ru
%F FPM_1996_2_3_a1
O. A. Vasilieva; E. A. Lapshin. The mechanism of forced vibration propagation in nonlinear media. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 3, pp. 655-674. http://geodesic.mathdoc.fr/item/FPM_1996_2_3_a1/