Gr\"obner bases and coherentness of monomial associative algebras
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 501-509
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be an associative algebra which is defined by a finite number of monomial relations. In this paper we show that any finitely generated one-sided ideal in $A$ has a finite Gröbner basis. We propose an algorithm for constructing of this basis. As a consequence we obtain an algorithm for computation of syzygy module for the system of generators of the ideal. In particular, this syzygy module is finitely generated. It means that $A$ is coherent.
@article{FPM_1996_2_2_a6,
author = {D. I. Piontkovskii},
title = {Gr\"obner bases and coherentness of monomial associative algebras},
journal = {Fundamentalʹna\^a i prikladna\^a matematika},
pages = {501--509},
publisher = {mathdoc},
volume = {2},
number = {2},
year = {1996},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a6/}
}
D. I. Piontkovskii. Gr\"obner bases and coherentness of monomial associative algebras. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 501-509. http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a6/