Grzegorczyk logic with arithmetical proof operators
Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 483-499.

Voir la notice de l'article provenant de la source Math-Net.Ru

Logics with the modal operator “\ldots is true and provable” together with the modal proof operators “p is a proof of \ldots” are axiomatized. Kripke-style completeness, decidability and arithmetical completeness of these logics are established.
@article{FPM_1996_2_2_a5,
     author = {E. Yu. Nogina},
     title = {Grzegorczyk logic with arithmetical proof operators},
     journal = {Fundamentalʹna\^a i prikladna\^a matematika},
     pages = {483--499},
     publisher = {mathdoc},
     volume = {2},
     number = {2},
     year = {1996},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a5/}
}
TY  - JOUR
AU  - E. Yu. Nogina
TI  - Grzegorczyk logic with arithmetical proof operators
JO  - Fundamentalʹnaâ i prikladnaâ matematika
PY  - 1996
SP  - 483
EP  - 499
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a5/
LA  - ru
ID  - FPM_1996_2_2_a5
ER  - 
%0 Journal Article
%A E. Yu. Nogina
%T Grzegorczyk logic with arithmetical proof operators
%J Fundamentalʹnaâ i prikladnaâ matematika
%D 1996
%P 483-499
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a5/
%G ru
%F FPM_1996_2_2_a5
E. Yu. Nogina. Grzegorczyk logic with arithmetical proof operators. Fundamentalʹnaâ i prikladnaâ matematika, Tome 2 (1996) no. 2, pp. 483-499. http://geodesic.mathdoc.fr/item/FPM_1996_2_2_a5/